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Abstract Understanding how future climate periods

influence fire behaviour is important for organizing fire

suppression strategy and management. The meteorological

factors are the most critical parameters affecting fire

behaviour in natural landscapes; hence, predicting climate

change effects on fire behaviour could be an option for

optimizing firefighting resource management. In this study,

we assessed climate change impacts on fire behaviour

parameters (rate of fire growth, rate of spread and fireline

intensity) for a typical Mediterranean landscape of Greece.

We applied the minimum travel time fire simulation

algorithm by using the FlamMap software to characterize

potential response of fire behaviour for three summer

periods. The results consisted of simulated spatially

explicit fire behaviour parameters of the present climate

(2000) and three future summer periods of 2050, 2070 and

2100, under the A1B emissions scenario. Statistical sig-

nificant differences in simulation outputs among the four

examined periods were obtained by using the Tukey’s

significance test. Statistical significant differences were

mainly obtained for 2100 compared to the present climate

due to the significant projected increase in the wind speed

by the end of the century. The analysis and the conclusions

of the study can be important inputs for fire suppression

strategy and fire management (deployment of fire sup-

pression resources, firefighter safety and exposure, trans-

portation logistics) quantifying the effect that the expected

future climate periods can have on fire suppression diffi-

culty in Mediterranean landscapes.

Keywords Fire behaviour � Climate change projections �
Landscape fire modelling � Mediterranean ecosystem

Introduction

Forest fires have always been present in the Mediterranean

ecosystems; thus they constitute a major ecological and

socioeconomic issue. During the last decades, both the

number and the average size of large fires have shown an

increasing trend, causing extensive economic and ecolog-

ical losses and often human casualties (European Com-

mission 2011). Many factors are considered to contribute to

this change, including climatic change (Flannigan et al.

2000; Pausas et al. 2008; Hewitson et al. 2014) and human

practices leading to increased fuel accumulation (Moreira

et al. 2009). Fire statistics show a significant increase in

both the number of wildfires and burnt area in Greece. The
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number of fires doubled and the area burned tripled during

the years after 1980 (Dimitrakopoulos et al. 2011), and

several reasons have been speculated for this augmentation

in wildfire activity such as changes in population activities,

socioeconomic conditions, land use, fuel accumulation,

drought frequency and duration (Dimitrakopoulos and

Mitsopoulos 2006). Increase in area burned demonstrates

that wildland fires occur in a more severe mode in terms of

fire behaviour parameters, such as fire size, fire rate of

spread and fireline intensity, thus creating major difficulties

in fire suppression efficiency (Andrews et al. 2011). Fur-

thermore, increased wildland fire activity over the last

30 years has had profound effects on budgets and opera-

tional priorities of the Forest Service, Civil Protection

agencies, Fire Service and local entities with wildland fire

responsibilities. Fire suppression tactics during wildland

fires is a very complex issue. Firefighter officers have to

consider a priori the wildfire threats and need to have the

ability to identify in real time the expected fire propagation,

intensity and the potential of a wildfire to affect natural

resources and valuable assets. Furthermore, they need to

decide what type of fire suppression mode is required to

protect efficiently the high valuable artificial and natural

resources (Yoder 2004). The deployment of fire suppres-

sion forces and resources requires accurate estimates of

variety of factors such as potential fire behaviour, topog-

raphy, weather and personnel safety and exposure (Haight

and Fried 2007).

Although it has not yet been clarified as to whether the

meteorological conditions or the landscape pattern funda-

mentally determines fire risk and spread (Moreira et al.

2011), it seems that the climatic and weather conditions in

the Mediterranean have a profound effect on fire occur-

rence (Koutsias et al. 2013; Bedia et al. 2013). Fire beha-

viour and risk are linked directly to weather, as

temperature, atmospheric moisture, drought conditions and

winds affect ignition potential, fire spread and intensity,

and increase suppression difficulty and increased fire

effects. Greece, being part of Eastern Mediterranean, is

considered a ‘‘hot spot’’ for fire studies, not only because of

its high sensitivity to changes in recent decades in those

socioeconomic processes recognized to be driver of fire

regime changes, such as processes of rural depopulation,

land abandonment and reduction in traditional forest use

(Moreira et al. 2011), but also for the reason that according

to the majority of climate models, the most likely evolution

of this region is towards a hotter and drier climate, with a

significantly higher risk of intense heat wave episodes as

well as an increase in fire hazard and occurrence (Good

et al. 2008; Giannakopoulos et al. 2009, 2011, 2012).

Recently, there is much consideration about the rela-

tionship between climate change and fire occurrence, not

only in the Mediterranean but also in global scale. One way

to analyse this relationship is by using raw meteorological

data (Vázquez and Moreno 1993; Pausas 2004), drought

indices (Hall and Brown 2003; Dimitrakopoulos and

Bemmerzouk 2003; Collins et al. 2006; Maingi and Henry

2007), fire risk indicators (Piñol et al. 1998) and climatic

output of global circulation models (GCMs) (Flanningan

and Van Wagner 1991; Torn and Fried 1992; Flannigan

et al. 2000; Wotton et al. 2003; de Groot et al. 2003; Brown

et al. 2004).

Although climatic conditions play an important role in

fire behaviour and wildfire risk, most studies in the

Mediterranean have focused mainly on the potential

impacts of climate change to fire risk using a variety of

approaches. Many studies have focused on the relationship

between fire risk and the meteorological conditions using

fire data and regional climate model (RCM) output. Karali

et al. (2014) have evaluated current fire risk using actual

occurrence data and estimated future fire risk projections

driven by climate change for Greece. Projections of future

fire danger conditions in future climate scenarios for Spain

have been performed by Herrera et al. (2013), while Bedia

et al. (2013) have developed future fire risk projections

based on a multi-model RCM dataset. Furthermore,

Amatulli et al. (2013) have estimated future burned areas in

the Mediterranean, and in individual EU countries, most

affected by forest fires, using different modelling tech-

niques. Moreover, in a recent study, Turco et al. (2014)

have investigated the long-term climate-driven changes in

burned area and in the number of fires in NE Spain by

applying a statistical fire model driven by RCM output.

However, the effects and the possible relationship

between climatic change and fire behaviour parameters

have not been studied extensively due to the difficulties in

obtaining both high-resolution climatic and fuel data as

required in spatial fire modelling studies (Mallinis et al.

2008; Fried et al. 2008).

The main objective of this study is to investigate the

potential impact of climate change on fire behaviour for a

typical Mediterranean area of Greece by employing high-

resolution RCM data and fine-scale landscape fire beha-

viour modelling.

Methods

Study area

Mt. Penteli is situated 30 km north-east of Athens, and the

study area covers 16,025 ha (Fig. 1). The maximum alti-

tude of the region is approximately 1200 m with mild

slopes (15–30 %). The climate of the area is characterized

as typical subtropical Mediterranean, with prolonged hot

and dry summers succeeded by considerably mild and wet
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winters. The climate is characterized as Mediterranean type

(Csa) according to the Koeppen classification, and the

annual amount of rainfall reaches 413 mm. The highest

mean summer temperature reaches 26 �C. The largest part

of the area is covered by Aleppo pine (Pinus halepensis

Mill.) forests followed by dense and sparse patches of

shrublands dominated by Kermes oak (Quercus coccifera)

and agriculture areas. The mountain is nowadays sur-

rounded by rapidly expanding settlements. During the

second part of the twentieth century, several fire events and

human pressure led to changes in the vegetation cover and

the land cover of the mountain. Several large fires affected

the area during the last 20 years, which have destroyed

hundreds of residential structures and settlements (Xan-

thopoulos 2009).

Forest fuel sampling

All the areas in the study site were stratified on vegetation

maps according to the dominant vegetation type. All the

stratified areas were surveyed on site, and 40 representative

locations with typical (‘‘average’’) fuel conditions for each

area were selected based on local forest experts’ knowl-

edge. Surface fuel load was estimated with the Brown et al.

(1982) method for inventorying surface fuel biomass.

Eleven fuel parameters were measured in each location as

follows (Brown et al. 1982):

1. The 1-, 10-, 100-, 1000-h and total fuel loads were

measured with the transect-line method (four 30-m-

long transects). The 1-, 10-, 100- and 1000-h fuels time

lag corresponds to plant parts (branches) with diam-

eters of 0.0–0.5, 0.6–2.5, 2.6–7.5 and [7.5 cm,

respectively (Brown et al. 1982). A fuel’s time lag is

defined as the time it takes a fuel particle to reach 2/3’s

of its way to equilibrium with its local environment.

The clip-and-weigh method was used to determine all

fuel loads by size category.

2. Foliage load, litter load and depth, and shrub (up to

2.0 m in height) and herbaceous (live and dead)

vegetation loads were measured in six 10 m2 sampling

plots with the clip-and-weight method.

3. The height of the shrub and herbaceous vegetation

layers was also measured in the sampling plot.

The percentage of the total area covered by each fuel

type (shrub herbaceous, litter, etc.) was determined with

the line intercept method in the fuel transects (30 m long)

that were used for fuel measurements (Bonham 1989). All

fuel loads (fuel weight per unit surface area) were

expressed on a dry-weight basis. Differences in total fuel

loads among the fuel models resulted were tested by per-

forming one-way ANOVA and Duncan’s multiple range

test.

Fuel mapping

Fuel-type mapping relied on the use of 50 cm orthoim-

agery produced from natural colour aerial imagery

acquired in 2007–2009 under the Hellenic National

Fig. 1 Mt. Penteli study area is

situated north-east of Athens

metropolitan area
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Cadastre campaign publicly available on a web mapping

service (WMS) (Mallinis et al. 2014). Image segmentation

applied to the orthoimagery delineated homogeneous land

cover polygons. With the bottom-up segmentation algo-

rithm, embedded within the commercial software Trimble

eCognition (version 8.7), individual image pixels were

perceived as the initial regions, which were then sequen-

tially merged pairwise into larger ones with the intent of

minimizing the heterogeneity of the resulting objects. The

sequence of the merging objects, as well the size and shape

of the resulting objects, was empirically determined by the

user (Mallinis et al. 2008). The poor spectral resolution of

the orthoimagery put limitations on the use of automated

classification techniques. Therefore, fuel types were iden-

tified based on manual visual interpretation procedures of

various features on the mosaicked orthoimages based on

shade, shape, size, texture and association of features. A

minimum mapping unit of 0.1 ha was adopted in the

mapping process in order to ensure consistency with the

resolution of the digital elevation model used in the fire

simulation process.

Future climate simulations

In the current study, output from the regional climate model

RACMO2 for both the present and the future period was

used. RACMO2 was developed within the framework of the

EU project ENSEMBLES (www.ensembles-eu.org) by the

RoyalNetherlandsMeteorological Institutewidely knownas

KNMI. The KNMI-RACMO2 regional climate model

(Lenderink et al. 2003) is forced with output from a transient

run conducted with the ECHAM5 global climate model. The

model uses 40 vertical levels on a horizontal 95 9 85

(lat 9 lon) grid and has a horizontal resolution of 25 km.

The future period simulations of the model are based on the

IPCC SRES A1B scenario (Nakicenovic et al. 2000) which

provides a good midline estimate for carbon dioxide emis-

sions and economic growth (Alcamo et al. 2007). KNMI-

RACMO2 RCM has been extensively validated all over

Europe (Mediterranean region also included) in the course of

EU project ENSEMBLES (www.ensembles-eu.org). She
model was selected among various other models available as

was the ‘‘best-performing’’ model in Europe and the

Mediterranean based on the ENSEMBLES Deliverable

D3.2.2 (http://ensembles-eu.metoffice.com) and on the

Christensen et al. (2010) work. According to these publica-

tions, KNMI-RACMO2 was found to more accurately sim-

ulate both the mean climate and the extremes in Europe and

the Mediterranean region. Furthermore, Kostopoulou et al.

(2012) have performed a regional evaluation of various

models (KNMI-RACMO2 included) for the Balkan Penin-

sula focusing on climate extremes. According to this study,

RACMO2 manages to reproduce patterns of extreme

temperature and precipitation with reasonable accuracy

when compared to the E-OBS gridded observational dataset.

The climatic input data used in the current concern daily

values of air maximum temperature, minimum relative

humidity, maximum wind speed and the meteorological

wind direction. In order to calculate the meteorological

direction of the wind, the horizontal and vertical wind

components were used. In the current study, 10-year periods

were used as these are more suitable for fire and forest

managers and practitioners who usually make 10-year forest

management plans. Therefore, the period 1991–2000 was

considered to be the present-day period and was used as

reference for comparison with future projections, namely the

decades 2045–2055, 2065–2075 and 2091–2100. As the

study area falls between two model grid points in order to

have a better representation of the prevailing meteorological

conditions, the average of these points was used. At each grid

point, the average values for each variable for the period

June–September were calculated for each decade. Finally,

the mean value of the two grid points for each variable was

used.

Fire simulation

Fire behaviour simulations were performed using FlamMap

version 5 software in order to provide a spatial and tem-

poral simulation of fire spread and behaviour, integrating

the large amount of information on fuels, weather condi-

tions and terrain data (Finney 2006). Simulated wildfire

spread and behaviour were performed with the minimum

travel time (MTT) algorithm. The MTT algorithm repli-

cates fire growth by Huygens’ principle where the growth

and behaviour of the fire edge are a vector or wave front

(Finney 2002). MTT performance, as it is embedded in

FlamMap software, has been recently successfully evalu-

ated and calibrated in the study area by comparing its

simulation results against recent real fire events (Mit-

sopoulos et al. 2013). MTT simulations were conducted by

using as input data the digital elevation model (DEM) of

the area generated from 20-m interval contour lines, the

spatial extent of the fuel models and the fuel parameters

values of each model in the study area. A 30 m 9 30 m

raster input file was created for the fire simulations. Fur-

thermore, the themes required to model crown fire beha-

viour, including stand height, crown base height and crown

bulk density, were obtained from species-specific infor-

mation available at different spatial scales according to

Mitsopoulos and Dimitrakopoulos (2014) study. Stand

basal area data of Aleppo pine overstory for estimating

crown fuels were obtained by the most recent forest man-

agement plan (2010) of the study area.

Wind fields for FlamMap simulations in ASCII grid

format were obtained by running a mass consistent model

I. Mitsopoulos et al.
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(WindNinja) (Forthofer 2007), from which wind speed and

direction were estimated at 6 m above vegetation height.

The data of wind speed and direction were provided as

inputs to the WindNinja model, taking into account the

outputs of the future climatic projections. Fuel moistures

per fuel category in each fuel type found in the area for

each examined future climatic periods were estimated by

using the specific fuel moisture prediction equations for

Mediterranean species, developed by Aguado et al. (2007)

and Dimitrakopoulos and Bemmerzouk (2003) for dead

and live fuel moisture values, respectively. Heat content

and surface area-to-volume ratio values for the fuel types

developed were obtained by Dimitrakopoulos and Panov

(2001). The duration of all fire simulations was set to

480 min (8 h), since according to the historical fire records,

all fires in the region are suppressed within that average

period (Dimitrakopoulos 2001), while the ignition point for

all simulations was set the starting spot of a large fire which

burnt 14,000 ha of the mountain on 21 August 2009.

Concerning the FlamMap simulation parameters,

perimeter and distance resolutionswere set at 30 m, ensuring

a satisfactory resolution level for the projections of fire

perimeters and fire behaviour parameters. The outputs

resulted from the FlamMap runs were shapefiles of the

simulated fire perimeters andASCII files of the simulated fire

behaviour. Managing these outputs in a GIS environment,

the following informationwas obtained: final fire perimeters,

time of arrival, rate of spread, rate of fire size growth and

fireline intensity. Statistical significant differences in simu-

lation outputs among the four examined periods were

obtained by using the Tukey’s significance test.

Results

The five fuel models that resulted from the field sampling

represent all the major vegetation types of the study area

(Table 1). The dense shrublands (maquis) fuel model

incorporates maquis with heights up to 2.0 m, a high

proportion of foliage load and a substantial part of the fuel

load distributed to the large size class, while the sparse

shrublands fuel model is characterized by low height and

ground cover shrubs. The understory of Aleppo pine forests

is mainly composed of shrubs that present reduced fuel

load values and height compared to the dense shrublands

fuel model and increased values compared to sparse

shrublands fuel model. Canopy fuel load, canopy bulk

density and canopy base height in Aleppo pine forests

presented mean values of 1.02 kg/m2, 0.12 kg/m3 and

3.3 m, respectively. The grasslands and the agricultural

fields (mainly litter from olive trees) demonstrated limited

spatial heterogeneity and are represented by fuel model 4

for grasslands (total fuel load of 4.3 t/ha) and fuel model 5

for agricultural areas (total fuel load of 2.2 t/ha). The

variation of total fuel load was low in all fuel models, as

suggested by the magnitude of the standard deviation (SD).

The total loads of all fuel models were found to be statis-

tically different at (one-way ANOVA and Duncan’s mul-

tiple range test).

The whole study area is mainly of 6189 ha of shrublands

(36 % of the area)—2540 ha of them dense shrublands—

and 5148 ha of Mediterranean pines (30 % of the area).

Significant part of the area is occupied by agricultural areas

(12 % or 2055 ha), while non-fuels and grasslands occupy

only 6 ha and 1 % of the study area. The sparse shrublands

category is located mainly in the eastern and south-east

parts of the area, while dense shrublands occupy the central

part of the site. On the other hand, pine stands are found

mainly in the west and north parts of Penteli mountain,

intermixed with agricultural areas (Fig. 2).

The climatic input data for each variable and decade

for both current and future climate are shown in Table 2.

The maximum temperature, the minimum relative

humidity and the maximum wind speed for the broader

Attica region for the present-day period are depicted in

Fig. 3. Spatial wind fields for present (2000) and 2100

future periods as resulted from WindNinja analysis are

shown in Fig. 4.

Table 1 Fuel models and parameters resulted from field sampling in the study area

Fuel model Average height

(cm)

Fuel load by category (t/ha)

Branch diameter (cm)

Live Litter depth (cm) Litter weight (t/ha)

0.0–0.5 0.6–2.5 2.6–7.5 [7.5 Foliage

Dense shrublands 252 8.7 4.5 3.1 – 6.6 2.4 3.1

Sparse shrublands 142 3.1 0.7 0.3 – 4.2 1.8 2.2

Understory of Aleppo pine forests 109 2.2 1.1 0.6 – 3.1 1.6 2.9

Grasslands 50 3.2 0.9 – – – 0.6 1.4

Agricultural areas 40 1.8 0.4 – – – 1.6 1.5
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As shown in Table 2, great increases in the maximum

temperature of up to 4 �C are expected for the study area

by the end of the century as well as small decreases in the

minimum relative humidity. Slight increases in the wind

speed are projected but only for the last future decade. This

is in agreement with a current study for the Greek domain,

in which a multi-model ensemble used suggested minor

increases in the wind speed during summer period by the

end of the century (Bank of Greece 2011). Furthermore,

both for the present-day period and for the future periods,

Fig. 2 Spatial explicit

distribution of the five forest

fuel models of the study area

derived upon VHR natural

colour orthoimagery

Fig. 3 Maximum temperature

a, minimum relative humidity

b and maximum wind speed

c averaged for the period June–

September for the present-day

period (1991–2000)

Table 2 Climatic input data

used in fire simulations for the

four examined periods

Maximum

temperature (�C)
Minimum relative

humidity (%)

Maximum wind speed

(km/h)

Wind

direction (�)

1991–2000 30.1 28 21.7 357

2045–2055 32.0 27 21.7 355

2065–2075 33.5 27 21.7 357

2091–2100 34.2 26 23.0 356
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the meteorological wind direction calculated and used in

the FlamMap simulations was northern. This is in agree-

ment with the prevailing wind direction during the summer

period in the Attica peninsula. Etesian winds with a

northerly flow typically blow during the summer and early

autumn, especially over the Aegean Sea and eastern con-

tinental Greece (including the Attica peninsula) (Kallos

et al. 1998; Kotroni et al. 2001).

Figure 5 shows the time of arrival for the 8-h simulation

(1-h time step), the fire rate of spread, the fireline intensity

and the rate of fire growth per hour resulted from the

simulation results. Maximum fire rate of spread reached up

to 18 m/min for the present-day period, 20 min/min for the

2045–2055 period, 25 m/min for the 2065–2075 period and

33 m/min for the 2091–2100 future period. Maximum

fireline intensities reached up to 15,488 kW/m (mean

value: 3516.2 kW/m), 21,312 kW/m (mean value:

5763.1 kW/m), 26,686 kW/m (mean value: 6838.6 kW/m)

and 26,747 kW/m (mean value: 6671.3 kW/m) for each

period, respectively. Statistical differences among the four

periods are presented in Table 3. Analysis of variance

(ANOVA) and Tukey’s multiple comparison test (95 %

confidence level) showed statistical differences among the

fire parameter values. The present-day period had the lower

fire behaviour parameter values compared to the other

periods. However, only the fireline intensity was signifi-

cantly different among all the periods. Rate of spread

presented significant difference only in the 2100 period

compared to the other examined periods. This may stem

from the fact that wind speed, which heavily affects the

rate of spread, presents changes only between the present

period and the 2091–2100 future period. The rate of fire

growth (burned area per hour) did not show any significant

difference among the four examined periods. Final simu-

lated burnt area (fire perimeter) was 3998 ha for the pre-

sent-day period, 4096 ha for the 2045–2055 period,

4389 ha for the 2065–2075 period and 4512 ha for the

2091–2100 period.

Discussion

The dense shrubland fuel type demonstrated the most

severe fire potential in all studied periods due to the heavier

fuel load. The grassland and agriculture fuel types pro-

duced low-intensity fires due to the reduced fuel load that

was comprised of dry fine fuels. As reported by other

authors (van Wilgen et al. 1985; Arca et al. 2007; Santoni

et al. 2011; Jahdi et al. 2015), Rothermel’s fire rate of

spread equation as it is embedded to FlamMap’s fire sim-

ulator has been extensively validated on areas different

from those where the models were originally developed

and they stated that specific custom model needs to be

developed to account for both the fuel characteristics and

the high heterogeneity of Mediterranean vegetation. Arca

et al. (2007) also suggest that localized, site-specific fuel

models give more reliable fire behaviour predictions using

FlamMap simulator. Similarly, studies that performed

using landscape fire simulation modelling highlight the fact

that local-specific fuel data and custom fuel models

increase the accuracy of predicted fire behaviour (Miller

and Yool 2002). Mitsopoulos et al. (2013) evaluated

FlamMap simulator performance and accuracy based on

the real fire perimeter of the 2009 large fire event. Their

analysis showed that FlamMap predicted correctly 88 % of

the total burnt area. Validation of fire simulation accuracy

has been also conducted with historical fires and data in

other Mediterranean ecosystems with satisfactory results

(Arca et al. 2007; Paz et al. 2011). However, these efforts

are characterized with high uncertainty due to the fact that

it is extremely difficult to obtain accurate fire and weather

data of real wildfires (Paz et al. 2011). Fire behaviour

values resulted from the simulations were found similar to

values reported in typical Mediterranean ecosystems

Fig. 4 Wind speed and direction at 6 m above vegetation height for

the present day (upper figure) and the 2091–2100 period (lower

figure)
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(Dimitrakopoulos 2002; Arca et al. 2007). Statistical sig-

nificant differences in fire behaviour parameters were

mainly observed during the 2091–2100 future period

compared to the present-day period. This could be expec-

ted, since the slight increase in wind speed values during

the last future period (2091–2100) resulted on more severe

fire behaviour. Wind speed is the main factor affecting fire

behaviour in natural ecosystems (Pyne et al. 1996). Fire

behaviour models used in this simulation are semiempiri-

cal. Nevertheless, they have been tested in high-intensity

experimental fires with satisfactory results (Stocks et al.

2004). New landscape fire modelling efforts use MTT

algorithm in order to assess spatial wildfire risk and high-

value resources assets exposure to fire in Mediterranean

fuel complexes (Arca et al. 2012; Salis et al. 2013; 2014).

However, that approach is suitable for assessing the

important scale-related factors that drive wildfire likeli-

hood at multiple ignition points, does not present essential

inputs (e.g. time of arrival, rate of spread, etc.) for fire

suppression strategies, such as the use, distribution and

allocation of available firefighting resources, fire towers

and water tank constructions.

Visual image interpretation is one of the most com-

monly used techniques for the reliable and accurate map-

ping of homogeneous land cover, vegetation and fuel types,

with high costs associated with this classification approach.

Fig. 5 Time of arrival (upper

row), rate of spread (middle

row) and fireline intensity

(lower row) for the present day

and for the 2045–2055,

2065–2075 and 2091–2100

periods

Table 3 Mean fire behaviour

parameter values of each

examined period

Climate scenario Rate of spread (m/min) Fireline intensity (kW/m) Rate of fire growth (ha/hr)

1991–2000 9a (3.1) 3516.2a (265) 499.8a

2045–2055 10a (3.6) 5763.1b (411) 512.1a

2065–2075 12.5a (5.6) 6838.6c (485) 548.1a

2091–2100 16.1b (9.3) 6671.3d (490) 563.9a

Test of significance was performed by Tukey’s multiple comparison test, at p = 0.05

Values with the same letter are not significantly different. Standard deviation is shown in parenthesis
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Automated segmentation as preliminary step can signifi-

cantly reduce the time and human resources needed in this

approach (Arroyo et al. 2008, Mallinis et al. 2014). This

preliminary step of image segmentation even in poor

spectral resolution images can facilitate assignment of

image segments to fuel types, balancing costs and preci-

sion, particularly when working at fine scales, and is

widely employed by governmental agencies (Arroyo et al.

2008).

This study represents one of the first approaches for

characterizing fire behaviour within the context of climate

change with a modelling approach at local scale in a

complex-fuel Mediterranean landscape. Although the

choice of a sole study area still not be sufficient to represent

the complexity of the fire behaviour in the Mediterranean

context, the broad gradient of conditions exist in the study

area allows to highlight the benefits of using fire spread

models for simulating wildfires under a changing climate in

the region. Arca et al. (2012) used the MTT algorithm to

simulate fire behaviour under climate change by using a

regional climate model with a spatial resolution of 25 km.

Their analysis showed an increase in the number of days

with extreme fire weather conditions, while fire behaviour

values for potential extreme fire days are expected to

experience a small decrease, most likely because of the

predicted decrease in the wind intensity. In a similar study,

Amiro et al. (2001) found that increases in fire behaviour

potential could considerably reduce suppression capability

in the future and lead to greater area burned by wildfires in

Canadian ecosystems. Syphard et al. (2011) have planned

and evaluated fuel treatment years in advance by using

future fire behaviour estimates based on climate change

projections.

Future work is essential to address several key compo-

nents such as the new climate change emission scenarios

released by the Intergovernmental Panel on Climate

Change (Moss et al. 2010) which are integrated into

existing and new climate models and will produce a new

suite of output projections for managing future extreme

events and disasters for the remainder of the twenty-first

century. Although the RCM we have used has been proven

to be the best performer for our domain of study, there is

still a degree of uncertainty in our projections as we have

used a single model instead of an ensemble mean of RCMs

and the future period projections of the model are based

only on a single emissions scenario. Furthermore, one of

the primary uncertainties in modelling future fire behaviour

is the vegetation landscape change. It should be noted that

the current approach does not account for possible future

changes in fuel/vegetation spatial extent. A key next step is

to model future vegetation/fuels utilizing an established

vegetation state-and-transition model and then classifying

modelled vegetation into fuel models.

Conclusions

This study investigated the potential impact of climate

change to fire behaviour values in a typical ecosystem in

Eastern Mediterranean. Localized fuel models have been

developed for a Mediterranean study area based on

extensive fieldwork. Site-specific fuel models should be

adopted for providing more reliable spatial fire behaviour

predictions, especially in the case of the fragmented and

heterogeneous Mediterranean landscape. FlamMap simu-

lations resulted in the most intense fires in the dense

shrubland fuel type under the 2091–2100 future period.

Furthermore, fireline intensity and rate of fire growth maps

were derived, representing the fire suppression difficulty on

a spatial scale.

The proposed methodology presents an integration of

fuel mapping, projected future climate change and fire

behaviour simulation for fire management planning across

the landscape. Outputs created from this study will respond

to climate change and can be used as valuable components

of judicial long-term wildland fire prevention and man-

agement in Greece. Overall, the fire behaviour maps gen-

erated in this study allowed for quantitative assessment of

the future climate change on the expected fire behaviour at

a scale that is not possible by other approaches, like, for

instance, analysing ignition data and fire occurrence with-

out taking into account fire spread and intensity at land-

scape level. This work can provide useful guidelines to

firefrightening organizations to identify fire suppression

difficulty areas and to select the most appropriate fire

suppression means and tactics to protect human commu-

nities and natural ecosystems from wildfire losses.

Further studies of actual fire behaviour in the field are

necessary in order to validate and calibrate the outcomes of

the FlamMap fire behaviour simulators, especially in the

Mediterranean vegetation conditions. Additionally, the

potential future change of fuel/vegetation spatial extent and

fuel load values could be further examined in order to allow

researchers and land managers to address potential future

changes to fire severity and regime and shift in fire behaviour

distributions and estimate any additional firefighting

resources allocation, future carbon emission released from

wildfires and the long-term ecological restoration of degra-

ded ecosystems/landscapes after wildfires.
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